Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ; : 1055-1059, 2021.
Article in English | Web of Science | ID: covidwho-1532687

ABSTRACT

In the pathogenesis of COVID-19, impairment of respiratory functions is often one of the key symptoms. Studies show that in these cases, voice production is also adversely affected - vocal fold oscillations are asynchronous, asymmetrical and more restricted during phonation. This paper proposes a method that analyzes the differential dynamics of the glottal flow waveform (GFW) during voice production to identify features in them that are most significant for the detection of COVID-19 from voice. Since it is hard to measure this directly in COVID-19 patients, we infer it from recorded speech signals and compare it to the GFW computed from physical model of phonation. For normal voices, the difference between the two should be minimal, since physical models are constructed to explain phonation under assumptions of normalcy. Greater differences implicate anomalies in the bio-physical factors that contribute to the correctness of the physical model, revealing their significance indirectly. Our proposed method uses a CNN-based 2-step attention model that locates anomalies in time-feature space in the difference of the two GFWs, allowing us to infer their potential as discriminative features for classification. The viability of this method is demonstrated using a clinically curated dataset of COVID-19 positive and negative subjects.

2.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ; : 1035-1039, 2021.
Article in English | Web of Science | ID: covidwho-1532681

ABSTRACT

Phonation, or the vibration of the vocal folds, is the primary source of vocalization in the production of voiced sounds by humans. It is a complex bio-mechanical process that is highly sensitive to changes in the speaker's respiratory parameters. Since most symptomatic cases of COVID-19 present with moderate to severe impairment of respiratory functions, we hypothesize that signatures of COVID-19 may be observable by examining the vibrations of the vocal folds. Our goal is to validate this hypothesis, and to quantitatively characterize the changes observed to enable the detection of COVID-19 from voice. For this, we use a dynamical system model for the oscillation of the vocal folds, and solve it using our recently developed ADLES algorithm to yield vocal fold oscillation patterns directly from recorded speech. Experimental results on a clinically curated dataset of COVID-19 positive and negative subjects reveal characteristic patterns of vocal fold oscillations that are correlated with COVID-19. We show that these are prominent and discriminative enough that even simple classifiers such as logistic regression yields high detection accuracies using just the recordings of isolated extended vowels.

SELECTION OF CITATIONS
SEARCH DETAIL